

Einführung in die numerische Strömungsmechanik Sommersemester 2020

VERANSTALTUNGSDETAILS

Dr.-Ing. A. Stroh, Prof. Dr.-Ing. B. Frohnapfel

31. März 2020

Organisatorisches

Das KIT stellt sich weiter darauf ein, dass der Studienbetrieb am 20. April 2020 noch nicht oder nur in eingeschränkter Form beginnen kann. Entsprechend wird die Vorlesung und Übung "Einführung in die numerische Strömungsmechanik"erstmal im Online-Modus durchgeführt. Sobald sich die Situation entspannt, werden wir die Veranstaltung auf die Präsenzveranstaltung mit Vorlesung und Rechner-Übung umstellen. Die gesamte Kommunikation mit Kursteilnehmer erfolgt über das zentrale Learning Management System ILIAS.

Um zeitnah einen Überblick über die ungefähre Teilnehmerzahl zu haben, bitten wir Sie sich bereits jetzt in ILIAS anzumelden.

Informationen

Dozenten:	en: DrIng. Alexander Stroh, Dr. Nima Samkhaniani							
Vorlesung:	Gebäude 10.50, HS 101, Di 11:30 13:00, wöchentlich							
	die aufgezeichnete Vorlesung, dazugehörigen Folien und Dokumente wer-							
	den wöchentlich am Dienstag über ILIAS veröffentlicht (ab 21.04.2020)							
Übung:	Gebäude 20.21, Pool B, Di 14:00 15:30, wöchentlich							
	Übungen werden in Form von Tutorials wöchentlich am Dienstag über							
	ILIAS verteilt, die Bearbeitung kann mittels zur Verfügung gestellter vir-							
	tueller Umgebung auf beliebigen Rechnern erfolgen. Fragen dazu können							
	in dem Forum zur Übungen oder in der online Sprechstunde gestellt wer-							
	den. Musterlösungen werden wöchentlich am Freitag ausgegeben.							
Sprechstunde:	online, Di 14:00 – 15:30, wöchentlich mittels Videokonferenz DFNconf							
E-Mail:	stroh@kit.edu, nima.samkhaniani@kit.edu							

Anmeldung & Links

Vorlesung

• https://ilias.studium.kit.edu/goto.php?target=crs_1099230&client_id=produktiv

Übung

• https://ilias.studium.kit.edu/goto.php?target=crs_1099246&client_id=produktiv

Passwort

• openfoam7

Online-Sprechstunde

- https://conf.dfn.de/webapp/conference/979120041
- PIN: 2020

Einführung in die numerische Strömungsmechanik Sommersemester 2020

Termine & Themen

$N_{\overline{0}}$	KW	Datum	Vorlesung	Übung
1	17	21.04.2020	Einführung, Grundgleichungen, Dimensionslose Kennzahlen	Einführung in Linux & CLI
2	18	28.04.2020	Lösungsverfahren, Lösen der Differentialgleichungssysteme	Einführung in python
3	19	05.05.2020	Einführung in Finite Volumen Methode (FVM)	FVM in python
4	20	12.05.2020	Fehler und Stabilität	Einführung in OpenFOAM und Paraview
5	21	19.05.2020	Diskretisierung & Vernetzung, Initial- & Randbedingungen	Vernetzung (blockMesh)
6	22	26.05.2020	Grundlagen der Turbulenz	Laminare Strömung (2D)
7	24	09.06.2020	Turbulenzmodellierung (RANS & LES)	Turbulente Strömung (2D), Flügelumströmung (RANS, 2D)
8	25	16.06.2020	Strömung mit Wärmeübergang	Strömung mit Wärmeübergang (2D)
9	26	23.06.2020	Mehrphasenströmungen	Zweiphasenströmung mit VoF
10	27	30.06.2020	Direkte Numerische Simulation (DNS)	Vernetzung (snappyHexMesh), Autoumströmung (RANS, 3D)
11	28	07.07.2020	Statistische Auswertung turbu- lenter Strömungen	DNS turbulenter Strömung
12	29	14.07.2020	Vorlesung Industriepartner	Statistische Auswertung einer DNS
13	30	21.07.2020	Visualisierungsmethoden	Visualisierung und Interpretati- on der Simulationsergebnisse

Übersicht

	April		Mai			Juni				Juli				
	21	28	5	12	19	26	2	9	16	23	30	7	14	21
Vorlesung	V1	V2	V3	V4	V5	V6		V7	V8	V9	V10	V11	V12	V13
Übung	Ü1	Ü2	Ü3	Ü4	Ü5	Ü6		Ü7	Ü8	Ü9	Ü10	Ü11	Ü12	Ü13
		:								:				