Institute of Fluid Mechanics (ISTM)

Numerical Modeling of Multiphase Flows

  • type: Vorlesung (V)
  • chair: Fakultät für Maschinenbau
    Inst. f. Strömungsmechanik
  • semester: SS 2020
  • place:

    AOC 101
    30.45 Anorganische Chemie Turm III

  • time: 2020-04-23
    15:45 - 17:15 wöchentlich
    11.10 Kleiner ETI HS
    11.10 Elektrotechnisches Institut (ETI)


    2020-04-30
    15:45 - 17:15 wöchentlich
    11.10 Kleiner ETI HS
    11.10 Elektrotechnisches Institut (ETI)

    2020-05-07
    15:45 - 17:15 wöchentlich
    11.10 Kleiner ETI HS
    11.10 Elektrotechnisches Institut (ETI)

    2020-05-14
    15:45 - 17:15 wöchentlich
    11.10 Kleiner ETI HS
    11.10 Elektrotechnisches Institut (ETI)

    2020-05-28
    15:45 - 17:15 wöchentlich
    11.10 Kleiner ETI HS
    11.10 Elektrotechnisches Institut (ETI)

    2020-06-04
    15:45 - 17:15 wöchentlich
    11.10 Kleiner ETI HS
    11.10 Elektrotechnisches Institut (ETI)

    2020-06-18
    15:45 - 17:15 wöchentlich
    11.10 Kleiner ETI HS
    11.10 Elektrotechnisches Institut (ETI)

    2020-06-25
    15:45 - 17:15 wöchentlich
    11.10 Kleiner ETI HS
    11.10 Elektrotechnisches Institut (ETI)

    2020-07-02
    15:45 - 17:15 wöchentlich
    11.10 Kleiner ETI HS
    11.10 Elektrotechnisches Institut (ETI)

    2020-07-09
    15:45 - 17:15 wöchentlich
    11.10 Kleiner ETI HS
    11.10 Elektrotechnisches Institut (ETI)

    2020-07-16
    15:45 - 17:15 wöchentlich
    11.10 Kleiner ETI HS
    11.10 Elektrotechnisches Institut (ETI)

    2020-07-23
    15:45 - 17:15 wöchentlich
    11.10 Kleiner ETI HS
    11.10 Elektrotechnisches Institut (ETI)


  • start: 26.04.2018
  • lecturer: Dr. Martin Wörner
  • sws: 2
  • ects: 4
  • lv-no.: 2130934
Notes
  1. Introduction in the subject of multi-phase flows (terms and definitions, examples)
  2. Physical fundamentals (dimensionless numbers, phenomenology of single bubbles, conditions at fluid interfaces, forces on a suspended particle)
  3. Mathematical fundamentals (governing equations, averaging, closure problem)
  4. Numerical fundamentals (discretization in space and time, truncation error and numerical diffusion)
  5. Models for interpenetrating continua (homogeneous model, algebraic slip model, standard two-fluid model and its extensions)
  6. Euler-Lagrange model (particle equation of motion, particle response time, one-/two-/four-way coupling)
  7. Interface resolving methods (volume-of-fluid, level-set and front-capturing method)
Prerequisites

Bachelor

Bibliography

A brief script can be downloaded from http://bibliothek.fzk.de/zb/berichte/FZKA6932.pdf.

Powerpoint presentations can be downloaded after each lecture from the ILIAS system.

A list of recommended books is provided in the first lecture.

Content of teaching
  1. Introduction in the subject of multi-phase flows (terms and definitions, examples)
  2. Physical fundamentals (dimensionless numbers, phenomenology of single bubbles, conditions at fluid interfaces, forces on a suspended particle)
  3. Mathematical fundamentals (governing equations, averaging, closure problem)
  4. Numerical fundamentals (discretization in space and time, truncation error and numerical diffusion)
  5. Models for interpenetrating continua (homogeneous model, algebraic slip model, standard two-fluid model and its extensions)
  6. Euler-Lagrange model (particle equation of motion, particle response time, one-/two-/four-way coupling)
  7. Interface resolving methods (volume-of-fluid, level-set and front-capturing method)
Annotation

For some topics of the lecture exercises are provided (working on them is optional).

Workload

regular attendance: 21h

self-study: 99h

Aim

The students can describe the physical fundamentals of multiphase flows (with focus on gas-liquid flows). The students are qualified to select for multiphase flow applications in energy and process engineering appropriate numerical methods and physical models, and to thoroughly evaluate the simulation results, so as to anaylze the specific advantages, disadvantages and restrictions of each method.

Exam description

Oral examination (in German or English language)

Duration: 30 minutes

Auxiliary means: none