Institute of Fluid Mechanics (ISTM)

Mathematical Methods in Fluid Mechanics (German lecture)

  • type: Vorlesung (V)
  • chair: Fakultät für Maschinenbau
    Inst. f. Strömungsmechanik
  • semester: SS 2020
  • place:

    Take place online

    see ILIAS

  • time: 2020-04-21
    14:00 - 15:30 wöchentlich
    10.91 Redtenbacher-Hörsaal
    10.91 Maschinenbau, Altes Maschinenbaugebäude


    2020-04-28
    14:00 - 15:30 wöchentlich
    10.91 Redtenbacher-Hörsaal
    10.91 Maschinenbau, Altes Maschinenbaugebäude

    2020-05-05
    14:00 - 15:30 wöchentlich
    10.91 Redtenbacher-Hörsaal
    10.91 Maschinenbau, Altes Maschinenbaugebäude

    2020-05-12
    14:00 - 15:30 wöchentlich
    10.91 Redtenbacher-Hörsaal
    10.91 Maschinenbau, Altes Maschinenbaugebäude

    2020-05-19
    14:00 - 15:30 wöchentlich
    10.91 Redtenbacher-Hörsaal
    10.91 Maschinenbau, Altes Maschinenbaugebäude

    2020-05-26
    14:00 - 15:30 wöchentlich
    10.91 Redtenbacher-Hörsaal
    10.91 Maschinenbau, Altes Maschinenbaugebäude

    2020-06-02
    14:00 - 15:30 wöchentlich
    10.91 Redtenbacher-Hörsaal
    10.91 Maschinenbau, Altes Maschinenbaugebäude

    2020-06-09
    14:00 - 15:30 wöchentlich
    10.91 Redtenbacher-Hörsaal
    10.91 Maschinenbau, Altes Maschinenbaugebäude

    2020-06-16
    14:00 - 15:30 wöchentlich
    10.91 Redtenbacher-Hörsaal
    10.91 Maschinenbau, Altes Maschinenbaugebäude

    2020-06-23
    14:00 - 15:30 wöchentlich
    10.91 Redtenbacher-Hörsaal
    10.91 Maschinenbau, Altes Maschinenbaugebäude

    2020-06-30
    14:00 - 15:30 wöchentlich
    10.91 Redtenbacher-Hörsaal
    10.91 Maschinenbau, Altes Maschinenbaugebäude

    2020-07-07
    14:00 - 15:30 wöchentlich
    10.91 Redtenbacher-Hörsaal
    10.91 Maschinenbau, Altes Maschinenbaugebäude

    2020-07-14
    14:00 - 15:30 wöchentlich
    10.91 Redtenbacher-Hörsaal
    10.91 Maschinenbau, Altes Maschinenbaugebäude

    2020-07-21
    14:00 - 15:30 wöchentlich
    10.91 Redtenbacher-Hörsaal
    10.91 Maschinenbau, Altes Maschinenbaugebäude


  • start: 18.04.2018
  • lecturer: Prof. Dr.-Ing. Bettina Frohnapfel
    Dr.-Ing. Davide Gatti
  • sws: 2
  • ects: 6
  • lv-no.: 2154432
  • information:

    Consultation hours: on Mondays, 13:00-14:30 make an appointment in the secretariat, room 609, building 10.23

Notes

The students can to simplify the Navier-Stokes equations for specific flow problems. They are able to employ mathematical method in fluid mechanics effectively in order to solve the resulting conservation equations analytically, if possible, or to enable simpler numerical access to the problem. They can describe the limits of applicability of the assumptions made to model the flow behavior.

The lecture will cover a selection of the following topics:

  • Potential flow theory
  • Creeping flows
  • Lubrication theory
  • Boundary-layer theory
  • Laminar-turbulent transition (linear stability theory)
  • Turbulent flows
  • Numerical solution of the governing equation (finite difference methods)

The students can to simplify the Navier-Stokes equations for specific flow problems. They are able to employ mathematical method in fluid mechanics effectively in order to solve the resulting conservation equations analytically, if possible, or to enable simpler numerical access to the problem. They can describe the limits of applicability of the assumptions made to model the flow behavior.

Prerequisites

Recommendations:

Basic Knowledge about Fluid Mechanics

Description

Media:

chalk board, Power Point

Bibliography

Kundu, P.K., Cohen, K.M.: Fluid Mechanics, Elsevier, 4th Edition, 2008

Batchelor, G.K.: An Introduction to Fluid Dynamics, Cambridge Mathematical Library, 2000

Pope, S. B.: Turbulent Flows, Cambridge University Press, 2000

Ferziger, H., Peric, M.: Computational Methods for Fluid Dynamics, Springer, 2008

Content of teaching

The lecture will cover a selection of the following topics:

  • Potential flow theory
  • Creeping flows
  • Lubrication theory
  • Boundary-layer theory
  • Laminar-turbulent transition (linear stability theory)
  • Turbulent flows
  • Numerical solution of the governing equation (finite difference methods)
Workload

regular attendance: 30 hours
self-study: 150 hours

Aim

The students can to simplify the Navier-Stokes equations for specific flow problems. They are able to employ mathematical method in fluid mechanics effectively in order to solve the resulting conservation equations analytically, if possible, or to enable simpler numerical access to the problem. They can describe the limits of applicability of the assumptions made to model the flow behavior.

Exam description

written

duration: 3 hours

Aux. means: formula sheet, pocket calculator