Institute of Fluid Mechanics (ISTM)

Numerical Fluid Mechanics

  • type: Vorlesung (V)
  • chair: Fakultät für Maschinenbau
    Inst. of Fluid Mechanics
  • semester: WS 19/20
  • place:

    Mittl. HS Raum 150 10.91 Maschinenbau, Altes Maschinenbaugebäude 

  • time: 2019-10-15
    11:30 - 13:00 wöchentlich
    10.91 Maschinenbau, Mittlerer Hörsaal
    10.91 Maschinenbau, Altes Maschinenbaugebäude


    2019-10-22
    11:30 - 13:00 wöchentlich
    10.91 Maschinenbau, Mittlerer Hörsaal
    10.91 Maschinenbau, Altes Maschinenbaugebäude

    2019-10-29
    11:30 - 13:00 wöchentlich
    10.91 Maschinenbau, Mittlerer Hörsaal
    10.91 Maschinenbau, Altes Maschinenbaugebäude

    2019-11-05
    11:30 - 13:00 wöchentlich
    10.91 Maschinenbau, Mittlerer Hörsaal
    10.91 Maschinenbau, Altes Maschinenbaugebäude

    2019-11-12
    11:30 - 13:00 wöchentlich
    10.91 Maschinenbau, Mittlerer Hörsaal
    10.91 Maschinenbau, Altes Maschinenbaugebäude

    2019-11-19
    11:30 - 13:00 wöchentlich
    10.91 Maschinenbau, Mittlerer Hörsaal
    10.91 Maschinenbau, Altes Maschinenbaugebäude

    2019-11-26
    11:30 - 13:00 wöchentlich
    10.91 Maschinenbau, Mittlerer Hörsaal
    10.91 Maschinenbau, Altes Maschinenbaugebäude

    2019-12-03
    11:30 - 13:00 wöchentlich
    10.91 Maschinenbau, Mittlerer Hörsaal
    10.91 Maschinenbau, Altes Maschinenbaugebäude

    2019-12-10
    11:30 - 13:00 wöchentlich
    10.91 Maschinenbau, Mittlerer Hörsaal
    10.91 Maschinenbau, Altes Maschinenbaugebäude

    2019-12-17
    11:30 - 13:00 wöchentlich
    10.91 Maschinenbau, Mittlerer Hörsaal
    10.91 Maschinenbau, Altes Maschinenbaugebäude

    2020-01-07
    11:30 - 13:00 wöchentlich
    10.91 Maschinenbau, Mittlerer Hörsaal
    10.91 Maschinenbau, Altes Maschinenbaugebäude

    2020-01-14
    11:30 - 13:00 wöchentlich
    10.91 Maschinenbau, Mittlerer Hörsaal
    10.91 Maschinenbau, Altes Maschinenbaugebäude

    2020-01-21
    11:30 - 13:00 wöchentlich
    10.91 Maschinenbau, Mittlerer Hörsaal
    10.91 Maschinenbau, Altes Maschinenbaugebäude

    2020-01-28
    11:30 - 13:00 wöchentlich
    10.91 Maschinenbau, Mittlerer Hörsaal
    10.91 Maschinenbau, Altes Maschinenbaugebäude

    2020-02-04
    11:30 - 13:00 wöchentlich
    10.91 Maschinenbau, Mittlerer Hörsaal
    10.91 Maschinenbau, Altes Maschinenbaugebäude


  • start: 16.10.2018
  • lecturer: Dr.-Ing. Franco Magagnato
  • sws: 2
  • lv-no.: 2153441
Notes

The students can describe the modern numerical simulation methods for fluid flows and can explain their relevance for industrial projects. They can choose appropriate boundary and initial conditions as well as turbulence models. They are qualified to explain the meaning of suitable meshes for processed examples. Convergence acceleration techniques like multi grid, implicit methods etc. as well as the applicability of these methods to parallel and vector computing can be described by the students. They can identify problems that occur during application of these methods and can discuss strategies to avoid them. The students are qualified to apply commercial codes like Fluent, Star-CD, CFX etc. as well as the research code SPARC. They can describe the differences between conventional methods (RANS) and more advanced approaches like Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS).

1. Governing Equations of Fluid Dynamics
2. Discretization
3. Boundary and Initial conditions
4. Turbulence Modelling
5. Mesh Generation
6. Numerical Methods
7. LES, DNS and Lattice Gas Methods
8. Pre- and Postprocessing
9. Examples of Numerical Methods for Industrial Applications

Prerequisites

none

Description

Media:

"Powerpoint presentation", Beamer

Bibliography

Ferziger, Peric: Computational Methods for Fluid Dynamics. Springer-Verlag, 1999.
Hirsch: Numerical Computation of Internal and External Flows. John Wiley & Sons Inc., 1997.
Versteg, Malalasekera: An introduction to computational fluid dynamics. The finite volume method. John Wiley & Sons Inc., 1995

Content of teaching

1. Governing Equations of Fluid Dynamics
2. Discretization
3. Boundary and Initial conditions
4. Turbulence Modelling
5. Mesh Generation
6. Numerical Methods
7. LES, DNS and Lattice Gas Methods
8. Pre- and Postprocessing
9. Examples of Numerical Methods for Industrial Applications

Workload

regular attendance: 22,5 hours
self-study: 97,5 hours

Aim

The students can describe the modern numerical simulation methods for fluid flows and can explain their relevance for industrial projects. They can choose appropriate boundary and initial conditions as well as turbulence models. They are qualified to explain the meaning of suitable meshes for processed examples. Convergence acceleration techniques like multi grid, implicit methods etc. as well as the applicability of these methods to parallel and vector computing can be described by the students. They can identify problems that occur during application of these methods and can discuss strategies to avoid them. The students are qualified to apply commercial codes like Fluent, Star-CD, CFX etc. as well as the research code SPARC. They can describe the differences between conventional methods (RANS) and more advanced approaches like Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS).

Exam description

Oral examination
Duration: 30 minutes
No tools or reference materials may be used during the exam.